180=(158-4x)+(x^2-5x)

Simple and best practice solution for 180=(158-4x)+(x^2-5x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(158-4x)+(x^2-5x) equation:



180=(158-4x)+(x^2-5x)
We move all terms to the left:
180-((158-4x)+(x^2-5x))=0
We add all the numbers together, and all the variables
-((-4x+158)+(x^2-5x))+180=0
We calculate terms in parentheses: -((-4x+158)+(x^2-5x)), so:
(-4x+158)+(x^2-5x)
We get rid of parentheses
x^2-4x-5x+158
We add all the numbers together, and all the variables
x^2-9x+158
Back to the equation:
-(x^2-9x+158)
We get rid of parentheses
-x^2+9x-158+180=0
We add all the numbers together, and all the variables
-1x^2+9x+22=0
a = -1; b = 9; c = +22;
Δ = b2-4ac
Δ = 92-4·(-1)·22
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-13}{2*-1}=\frac{-22}{-2} =+11 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+13}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| 29-x=189 | | 20=-4(2)^t | | 8+1/3x=7 | | u+−4=−33 | | 2(5z+2)=-12+10z+16 | | Y=0.07x/(x-1000) | | 19-x/6=13 | | 15x+17=5x+13 | | 5u-13=82 | | 200=0.5x-(900+0.25x) | | 9(p−4)=-18=p= | | 5x-x=x+45 | | x+250=150 | | g−6=4 | | h+17=25 | | 2xx6x=12x2 | | 714=21(k+2) | | r−535/13=21 | | 205=h/28+201 | | 498−p=209 | | 2y–8y+29=5 | | (x+2)(x+)=x^2-10 | | r/4−2=3 | | j/8+17=20 | | 3x-6•2x=189 | | j8+ 17=20 | | (7x+8)=(2x-5) | | 3x-6•x=189 | | 240-2x=16 | | j4−2=3 | | j4− 2=3 | | 667c=29 |

Equations solver categories